■ DO NOW – Geometry Regents	Lomac 2014-2015
-----------------------------	-----------------

C

7.4

(DN) ON BACK OF PACKET

Name Per

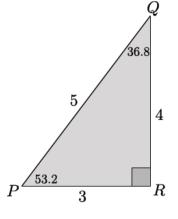
12

I can write sine, cosine and tangent ratios for right LO: triangles.

☐ (1) Similar Right Triangles: Opposite

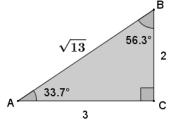
1. Identify the $\frac{opp}{hyp}$ ratios for $\angle A$

and for ∠B _____


and for ∠B

3. Describe the relationship between the ratios for $\angle A$ and $\angle B$

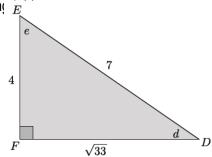
Similar Right Triangles: sine, cosine, and tangent


 \square (a) In \triangle PQR, m \angle P = 53.2° and m \angle Q = 36.8°. Complete the following table.

<u> </u>	.,	Za colo i complete	4.10 10.10111119 10.10101
Measure of Angle	$\sin \boldsymbol{\theta} = \frac{\text{opp}}{\text{hyp}}$	$\cos \boldsymbol{\theta} = \frac{adj}{hyp}$	$tan m{ heta} = rac{opp}{adj}$
53.2°			
36.8°			

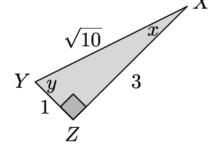
 \square (b) In the triangle at right, m \angle A = 33.7° and m \angle Q = 56.3°. Complete the following table.

Measure of Angle	sine	cosine	tangent
33.7°			
56.3°			



(2) calculator

Similar Right Triangles: sine, cosine, and tangent


 \square (c) In the triangle at right, let m \angle A = e and m \angle D = d. Complete the following

-	— (J		'
	Measure of Angle	sine	cosine	tangent
	d			
Ī	е			

 \square (d) In the triangle at right, let m \angle X = x and m \angle Y = y. Complete the following table.

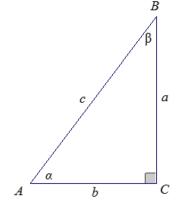
Measure of Angle	sine	cosine	tangent
х			
у			

 \square (e) Tamar did not finish completing the table below for a diagram similar to the previous problems that the teacher had on the board wherer p was the measure of \angle P and q was the measure of \angle Q. Use any patterns you notice from parts (a) through (d) to complete the table for Tamar AND draw a diagram of triangle PQR.

Measure of Angle	sine	cosine	tangent
р	$\sin p = \frac{11}{\sqrt{157}}$	$\cos p = \frac{6}{\sqrt{157}}$	$tan p = \frac{11}{6}$
q			

 \square (f) Explain how you were able to determine the sine, cosine, and tangent of $\angle Q$ in part (e).

(3) calculator


Similar Right Triangles: switching the reference angle

 \square (a) If α and β are the measurements of complementary angles, tehn we are going to show that $\sin\alpha = \cos\beta$. In right triangle ABC, the measurement of acute angle $\angle A$ is denoted by α , and the measurement of acute angle $\angle B$ is denoted by β .

Determine the following values in the table.

$\sin \alpha$	$\sin eta$	$\cos \alpha$	$\cos \beta$

What can you conclude from the results?

(b)

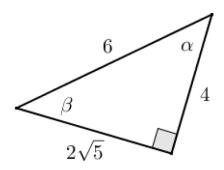
Find values for $\boldsymbol{\theta}$ that make each statement true.

- a. $\sin \theta = \cos (25)$
- b. $\sin 80 = \cos \theta$
- c. $\sin \theta = \cos (\theta + 10)$
- d. $\sin(\theta 45) = \cos(\theta)$

] (7)
cal	culator

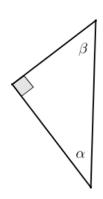
Exit Ticket

ON THE LAST PAGE


	[8]
com	npass
and	

Homework

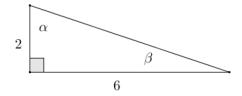
compass and Give straightedg


Given the triangle in the diagram, complete the following table.

Angle Measure	sin	cos	tan
α			
β			

Given the table of values below (not in simplest radical form), label the sides and angles in the right triangle.

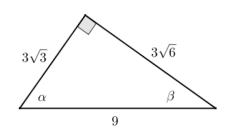
Angle Measure	sin	cos	tan
α	$\frac{4}{2\sqrt{10}}$	$\frac{2\sqrt{6}}{2\sqrt{10}}$	$\frac{4}{2\sqrt{6}}$
β	$\frac{2\sqrt{6}}{2\sqrt{10}}$	$\frac{4}{2\sqrt{10}}$	$\frac{2\sqrt{6}}{4}$


(8) calculator

Homework

Given $\sin \alpha$ and $\sin \beta$, complete the missing values in the table. You may draw a diagram to help you.

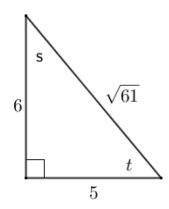
Angle Measure	sin	cos	tan
α	$\frac{\sqrt{2}}{3\sqrt{3}}$	$\frac{5}{3\sqrt{3}}$	
β			


Given the triangle shown to the right, fill in the missing values in the table.

Angle Measure	sin	cos	tan
α			
β			

Jules thinks that if α and β are two different acute angle measures, then $\sin \alpha \neq \sin \beta$. Do you agree or disagree? Explain.

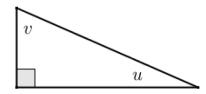
Given the triangle in the diagram, complete the following table.



Angle Measure	sin	cos	tan
α			
β			

Socator Andrews Society of the Socie

Angle Measure	$\sin \theta$	$\cos \theta$	tan θ
S			
t			



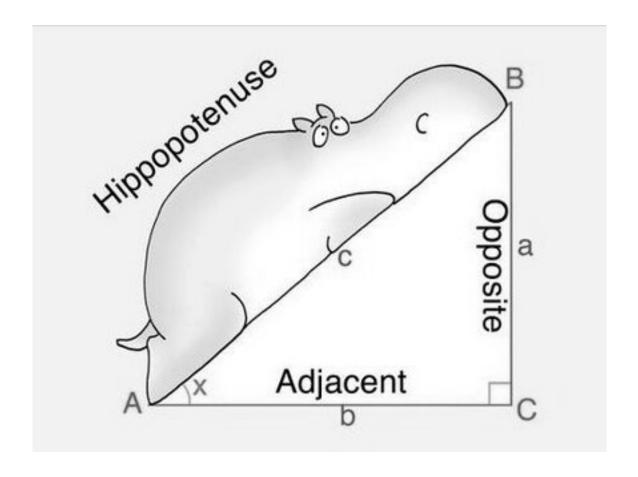
7.4

a. Which values are equal?

b. How are tan s and tan t related?

2. If u and v are the measures of complementary angles such that $\sin u = \frac{2}{5}$ and $\tan v = \frac{\sqrt{21}}{2}$, label the sides and angles of the right triangle in the diagram below with possible side lengths.

7.4


Draw a diagram to represent right triangle MLB with

Right angle L

Reference angle M

$$\frac{opposite}{hypotenuse} = \frac{5}{13}$$

$$\frac{\textit{opposite}}{\textit{adjacent}} = \frac{5}{12}$$

